Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594398

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Assuntos
COVID-19 , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Infecções por Coronavirus/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Humanos , Imunidade Inata , Pulmão/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Nasal , SARS-CoV-2/patogenicidade , Endorribonucleases Específicas de Uridilato
2.
Recent Pat Biotechnol ; 16(3): 226-242, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35379131

RESUMO

Coronaviruses hold idiosyncratic morphological features and functionality. The members of this group have a remarkable capability of infecting both animals and humans. Inimitably, the replication of the RNA genome continues through the set of viral mRNA molecules. Coronaviruses received least attention until 2003 since they caused only minor respiratory tract illnesses. However, this changed exclusively with the introduction of zoonotic SARS-CoV in 2003. In 2012, MERS-CoV emerged and confirmed this group of viruses as the major causative agents of severe respiratory tract illness. Today, Coronavirus Disease 2019 (i.e., COVID-19) has turned out to be a chief health problem that causes a severe acute respiratory disorder in humans. Since the first identification of COVID-19 in December 2019 in Wuhan, China, this infection has devastatingly spread all around the globe leading to a crippling affliction for humans. The strain is known as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and WHO (the World Health Organization) has termed this new pandemic disease as Coronavirus Disease (COVID-19). COVID-19 is still spreading, with an estimated 136 million confirmed cases and more than 2.94 million deaths worldwide so far. In the current scenario, there is no particular treatment for COVID-19; however, remarkable efforts for immunization and vaccine development can be observed. Therefore, the execution of precautions and proper preventive measures are indispensable to minimize and control the community transmission of the virus. This review summarizes information related to the pathophysiology, transmission, symptoms, the host defense mechanism plus immunization and vaccine development against COVID-19 including the patents filed.


Assuntos
COVID-19/virologia , Coronavirus/patogenicidade , Pandemias , SARS-CoV-2/patogenicidade , Animais , COVID-19/epidemiologia , Coronavirus/classificação , Coronavirus/genética , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Patentes como Assunto , SARS-CoV-2/classificação , SARS-CoV-2/genética
3.
Virulence ; 13(1): 355-369, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35129074

RESUMO

MERS-CoV infection can damage the cellular metabolic processes, but the underlying mechanisms are largely unknown. Through screening, we found non-structural protein 1 (nsp1) of MERS-CoV could inhibit cell viability, cell cycle, and cell migration through its endonuclease activity. Transcriptome sequencing revealed that MERS-CoV nsp1 specifically downregulated the mRNAs of ribosomal protein genes, oxidative phosphorylation protein genes, and antigen presentation genes, but upregulated the mRNAs of transcriptional regulatory genes. Further analysis shown nsp1 existed in a novel ribonucleosome complex formed via liquid-liquid phase separation, which did not co-localize with mitochondria, lysosomes, P-bodies, or stress granules. Interestingly, the nsp1-located granules specifically contained mRNAs of ribosomal protein genes and oxidative phosphorylation genes, which may explain why MERS-CoV nsp1 selectively degraded these mRNAs in cells. Finally, MERS-CoV nsp1 transgenic mice showed significant loss of body weight and an increased sensitivity to poly(I:C)-induced inflammatory death. These findings demonstrate a new mechanism by which MERS-CoV impairs cell viability, which serves as a potential novel target for preventing MERS-CoV infection-induced pathological damage.Abbreviations: (Middle East respiratory syndrome coronavirus (MERS-CoV), Actinomycin D (Act D), liquid-liquid phase separation (LLPS), stress granules (SGs), Mass spectrometry (IP-MS), RNA Binding Protein Immunoprecipitation (RIP)).


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteínas Ribossômicas , Proteínas não Estruturais Virais , Animais , Regulação da Expressão Gênica , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , RNA Mensageiro/genética , Proteínas Ribossômicas/genética
4.
Viruses ; 14(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35062368

RESUMO

Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review discusses the role of cytokines and chemokines in SARS-CoV-2 and its predecessors SARS-CoV and MERS-CoV, with particular emphasis on the elevated levels of inflammatory mediators that are shown to be correlated with disease severity. For this purpose, we reviewed and analyzed clinical studies, research articles, and reviews published on PubMed, EMBASE, and Web of Science. This review illustrates the role of the innate and adaptive immune responses in SARS, MERS, and COVID-19 and identifies the general cytokine and chemokine profile in each of the three infections, focusing on the most prominent inflammatory mediators primarily responsible for the COVID-19 pathogenesis. The current treatment protocols or medications in clinical trials were reviewed while focusing on those targeting cytokines and chemokines. Altogether, the identified cytokines and chemokines profiles in SARS-CoV, MERS-CoV, and SARS-CoV-2 provide important information to better understand SARS-CoV-2 pathogenesis and highlight the importance of using prominent inflammatory mediators as markers for disease diagnosis and management. Our findings recommend that the use of immunosuppression cocktails provided to patients should be closely monitored and continuously assessed to maintain the desirable effects of cytokines and chemokines needed to fight the SARS, MERS, and COVID-19. The current gap in evidence is the lack of large clinical trials to determine the optimal and effective dosage and timing for a therapeutic regimen.


Assuntos
COVID-19/imunologia , Imunidade Adaptativa , Quimiocinas/antagonistas & inibidores , Quimiocinas/imunologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Humanos , Imunidade Inata , Inflamação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2/patogenicidade , Tratamento Farmacológico da COVID-19
5.
Braz. J. Pharm. Sci. (Online) ; 58: e20975, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420435

RESUMO

Abstract Within recent past, coronavirus has shaken the whole world. The world faced a new pandemic of novel coronavirus 2019 (SARS-CoV-2/ COVID-19).It has socioeconomically impacted world population a lot in terms of education, economy as well as physical and mental health. This novel coronavirus is notorious enough that put human health at a great risk. Currently, researchers all over the world aretrying hard to develop a new drug/vaccine for its treatment. In past decades, the world population has faced various viral infectious illness outbreaks. Influenza A, Ebola, Zika, SARS and MERS viruses had whacked public health and economy. Medical science technology achieved the landmark in developing coronavirus (SARS-CoV-2) vaccines that are approved currently for emergency use. Some of the recently approved vaccines are developed by Pfizer and Moderna, Johnson and Johnson, Gam-COVID-vac (Sputnik V), Bharat Biotech (covaxin) andOxford-AstraZeneca vaccines (covishield) (Badenet al., 2021). Here, a short review is drafted focusingon infection, immune system, pathogenesis, phylogenesis, mode of transmission and impact of coronavirus on health and economy and recent developments in treating COVID-19


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , COVID-19/patologia , Pesquisadores/classificação , Preparações Farmacêuticas/análise , Coronavirus/patogenicidade , Síndrome Respiratória Aguda Grave/diagnóstico , Pandemias/classificação , SARS-CoV-2/patogenicidade , Sistema Imunitário/anormalidades
6.
Eur Rev Med Pharmacol Sci ; 25(22): 7162-7184, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34859882

RESUMO

The last two decades have witnessed the emergence of three deadly coronaviruses (CoVs) in humans: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are still no reliable and efficient therapeutics to manage the devastating consequences of these CoVs. Of these, SARS-CoV-2, the cause of the currently ongoing coronavirus disease 2019 (COVID-19) pandemic, has posed great global health concerns. The COVID-19 pandemic has resulted in an unprecedented crisis with devastating socio-economic and health impacts worldwide. This highlights the fact that CoVs continue to evolve and have the genetic flexibility to become highly pathogenic in humans and other mammals. SARS-CoV-2 carries a high genetic homology to the previously identified CoV (SARS-CoV), and the immunological and pathogenic characteristics of SARS-CoV-2, SARS-CoV, and MERS contain key similarities and differences that can guide therapy and management. This review presents salient and updated information on comparative pathology, molecular pathogenicity, immunological features, and genetic characterization of SARS-CoV, MERS-CoV, and SARS-CoV-2; this can help in the design of more effective vaccines and therapeutics for countering these pathogenic CoVs.


Assuntos
COVID-19/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Patologia Molecular/métodos , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Animais , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/transmissão , Feminino , Saúde Global/economia , Humanos , Masculino , Mamíferos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Virulência
7.
Semin Respir Crit Care Med ; 42(6): 828-838, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34918324

RESUMO

The past two decades have witnessed the emergence of three zoonotic coronaviruses which have jumped species to cause lethal disease in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. MERS-CoV emerged in Saudi Arabia in 2012 and the origins of MERS-CoV are not fully understood. Genomic analysis indicates it originated in bats and transmitted to camels. Human-to-human transmission occurs in varying frequency, being highest in healthcare environment and to a lesser degree in the community and among family members. Several nosocomial outbreaks of human-to-human transmission have occurred, the largest in Riyadh and Jeddah in 2014 and South Korea in 2015. MERS-CoV remains a high-threat pathogen identified by World Health Organization as a priority pathogen because it causes severe disease that has a high mortality rate, epidemic potential, and no medical countermeasures. MERS-CoV has been identified in dromedaries in several countries in the Middle East, Africa, and South Asia. MERS-CoV-2 causes a wide range of clinical presentations, although the respiratory system is predominantly affected. There are no specific antiviral treatments, although recent trials indicate that combination antivirals may be useful in severely ill patients. Diagnosing MERS-CoV early and implementation infection control measures are critical to preventing hospital-associated outbreaks. Preventing MERS relies on avoiding unpasteurized or uncooked animal products, practicing safe hygiene habits in health care settings and around dromedaries, community education and awareness training for health workers, as well as implementing effective control measures. Effective vaccines for MERS-COV are urgently needed but still under development.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Camelus/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Surtos de Doenças/prevenção & controle , Humanos , Controle de Infecções/métodos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade
8.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34635581

RESUMO

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Assuntos
Benzotiazóis/farmacologia , Tratamento Farmacológico da COVID-19 , Oligopeptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Animais , Benzamidinas/química , Benzotiazóis/farmacocinética , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Ésteres/química , Guanidinas/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Oligopeptídeos/farmacocinética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/ultraestrutura , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
9.
mBio ; 12(5): e0234221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700373

RESUMO

The recent emergence and spread of zoonotic viruses highlights that animal-sourced viruses are the biggest threat to global public health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an HKU2-related bat coronavirus that was spilled over from Rhinolophus bats to swine, causing large-scale outbreaks of severe diarrhea disease in piglets in China. Unlike other porcine coronaviruses, SADS-CoV possesses broad species tissue tropism, including primary human cells, implying a significant risk of cross-species spillover. To explore host dependency factors for SADS-CoV as therapeutic targets, we employed genome-wide CRISPR knockout library screening in HeLa cells. Consistent with two independent screens, we identified the zinc finger DHHC-type palmitoyltransferase 17 (ZDHHC17 or ZD17) as an important host factor for SADS-CoV infection. Through truncation mutagenesis, we demonstrated that the DHHC domain of ZD17 that is involved in palmitoylation is important for SADS-CoV infection. Mechanistic studies revealed that ZD17 is required for SADS-CoV genomic RNA replication. Treatment of infected cells with the palmitoylation inhibitor 2-bromopalmitate (2-BP) significantly suppressed SADS-CoV infection. Our findings provide insight on SADS-CoV-host interactions and a potential therapeutic application. IMPORTANCE The recent emergence of deadly zoonotic viral diseases, including Ebola virus and SARS-CoV-2, emphasizes the importance of pandemic preparedness for the animal-sourced viruses with potential risk of animal-to-human spillover. Over the last 2 decades, three significant coronaviruses of bat origin, SARS-CoV, MERS-CoV, and SARS-CoV-2, have caused millions of deaths with significant economy and public health impacts. Lack of effective therapeutics against these coronaviruses was one of the contributing factors to such losses. Although SADS-CoV, another coronavirus of bat origin, was only known to cause fatal diarrhea disease in piglets, the ability to infect cells derived from multiple species, including human, highlights the potential risk of animal-to-human spillover. As part of our effort in pandemic preparedness, we explore SADS-CoV host dependency factors as targets for host-directed therapeutic development and found zinc finger DHHC-type palmitoyltransferase 17 is a promising drug target against SADS-CoV replication. We also demonstrated that a palmitoylation inhibitor, 2-bromopalmitate (2-BP), can be used as an inhibitor for SADS-CoV treatment.


Assuntos
Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alphacoronavirus/patogenicidade , Proteínas do Tecido Nervoso/metabolismo , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alphacoronavirus/efeitos dos fármacos , Animais , COVID-19/metabolismo , Células HeLa , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Proteínas do Tecido Nervoso/genética , Palmitatos/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Suínos
10.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686605

RESUMO

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , RNA Viral/administração & dosagem , Replicon , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Feminino , Deleção de Genes , Genes env , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , RNA Viral/genética , RNA Viral/imunologia , Vacinas de DNA , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Virulência/imunologia
11.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704923

RESUMO

The highly pathogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a severe respiratory virus. Recent reports indicate additional central nervous system (CNS) involvement. In this study, human DPP4 transgenic mice were infected with MERS-CoV, and viral antigens were first detected in the midbrain-hindbrain 4 days post-infection, suggesting the virus may enter the brainstem via peripheral nerves. Neurons and astrocytes throughout the brain were infected, followed by damage of the blood brain barrier (BBB), as well as microglial activation and inflammatory cell infiltration, which may be caused by complement activation based on the observation of deposition of complement activation product C3 and high expression of C3a receptor (C3aR) and C5a receptor (C5aR1) in neurons and glial cells. It may be concluded that these effects were mediated by complement activation in the brain, because of their reduction resulted from the treatment with mouse C5aR1-specific mAb. Such mAb significantly reduced nucleoprotein expression, suppressed microglial activation and decreased activation of caspase-3 in neurons and p38 phosphorylation in the brain. Collectively, these results suggest that MERS-CoV infection of CNS triggers complement activation, leading to inflammation-mediated damage of brain tissue, and regulating of complement activation could be a promising intervention and adjunctive treatment for CNS injury by MERS-CoV and other coronaviruses.


Assuntos
Encéfalo/patologia , Proteínas do Sistema Complemento/imunologia , Infecções por Coronavirus/patologia , Dipeptidil Peptidase 4/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/virologia , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Inflamação , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia
12.
PLoS One ; 16(9): e0257965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587192

RESUMO

Many important questions remain regarding severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the viral pathogen responsible for COVID-19. These questions include the mechanisms explaining the high percentage of asymptomatic but highly infectious individuals, the wide variability in disease susceptibility, and the mechanisms of long-lasting debilitating effects. Bioinformatic analysis of four coronavirus datasets representing previous outbreaks (SARS-CoV-1 and MERS-CoV), as well as SARS-CoV-2, revealed evidence of diverse host factors that appear to be coopted to facilitate virus-induced suppression of interferon-induced innate immunity, promotion of viral replication and subversion and/or evasion of antiviral immune surveillance. These host factors merit further study given their postulated roles in COVID-19-induced loss of smell and brain, heart, vascular, lung, liver, and gut dysfunction.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/epidemiologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , COVID-19/metabolismo , Infecções por Coronavirus/epidemiologia , Bases de Dados Factuais , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/epidemiologia , Replicação Viral/efeitos dos fármacos
13.
Nat Commun ; 12(1): 5324, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493730

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels across the Middle East and Africa. Virus-induced pneumonia in humans results from animal contact, with a potential for limited onward transmission. Phenotypic changes have been suspected after a novel recombinant clade (lineage 5) caused large nosocomial outbreaks in Saudi Arabia and South Korea in 2016. However, there has been no functional assessment. Here we perform a comprehensive in vitro and ex vivo comparison of viruses from parental and recombinant virus lineages (lineage 3, n = 7; lineage 4, n = 8; lineage 5, n = 9 viruses) from Saudi Arabia, isolated immediately before and after the shift toward lineage 5. Replication of lineage 5 viruses is significantly increased. Transcriptional profiling finds reduced induction of immune genes IFNB1, CCL5, and IFNL1 in lung cells infected with lineage 5 strains. Phenotypic differences may be determined by IFN antagonism based on experiments using IFN receptor knock out and signaling inhibition. Additionally, lineage 5 is more resilient against IFN pre-treatment of Calu-3 cells (ca. 10-fold difference in replication). This phenotypic change associated with lineage 5 has remained undiscovered by viral sequence surveillance, but may be a relevant indicator of pandemic potential.


Assuntos
Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Animais , Camelus , Células Cultivadas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Genoma Viral , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Filogenia , Recombinação Genética , República da Coreia/epidemiologia , Arábia Saudita/epidemiologia , Replicação Viral
14.
Pathol Res Pract ; 225: 153565, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333398

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.


Assuntos
COVID-19/diagnóstico , Diagnóstico Diferencial , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade , Humanos , Pandemias
15.
Sci Rep ; 11(1): 15431, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326355

RESUMO

Currently, no approved vaccine is available against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease. The spike glycoprotein is typically considered a suitable target for MERS-CoV vaccine candidates. A computational strategy can be used to design an antigenic vaccine against a pathogen. Therefore, we used immunoinformatics and computational approaches to design a multi-epitope vaccine that targets the spike glycoprotein of MERS-CoV. After using numerous immunoinformatics tools and applying several immune filters, a poly-epitope vaccine was constructed comprising cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon-gamma (IFN-γ)-inducing epitopes. In addition, various physicochemical, allergenic, and antigenic profiles were evaluated to confirm the immunogenicity and safety of the vaccine. Molecular interactions, binding affinities, and the thermodynamic stability of the vaccine were examined through molecular docking and dynamic simulation approaches, during which we identified a stable and strong interaction with Toll-like receptors (TLRs). In silico immune simulations were performed to assess the immune-response triggering capabilities of the vaccine. This computational analysis suggested that the proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat viral infections; however, experimental evaluations remain necessary to verify the exact safety and immunogenicity profile of this vaccine.


Assuntos
Epitopos/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas/imunologia , Biologia Computacional , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Imunogenicidade da Vacina/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Modelos Moleculares , Simulação de Acoplamento Molecular , Filogenia , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas/farmacologia , Vacinas de DNA , Vacinas de Subunidades/imunologia , Vacinas Virais/imunologia
16.
IUBMB Life ; 73(8): 1005-1015, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34118117

RESUMO

The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.


Assuntos
COVID-19/mortalidade , Infecções por Coronavirus/mortalidade , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/mortalidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Tropismo Viral/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Rim/patologia , Rim/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/patologia , Síndrome Respiratória Aguda Grave/virologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Análise de Sobrevida
17.
Mol Cell Proteomics ; 20: 100120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34186245

RESUMO

Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , SARS-CoV-2/patogenicidade , Coronavirus Humano 229E/metabolismo , Coronavirus Humano 229E/patogenicidade , Coronavirus Humano OC43/metabolismo , Coronavirus Humano OC43/patogenicidade , Proteases Semelhantes à Papaína de Coronavírus/genética , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mapas de Interação de Proteínas , SARS-CoV-2/metabolismo , Resposta a Proteínas não Dobradas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
18.
Cells ; 10(6)2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-34070971

RESUMO

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Assuntos
Imunidade Adaptativa/genética , Camelus/virologia , Doenças Transmissíveis Emergentes/imunologia , Infecções por Coronavirus/imunologia , Imunidade Inata/genética , Zoonoses/imunologia , Animais , Anticorpos Antivirais , Brônquios/citologia , Brônquios/fisiologia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Camelus/genética , Camelus/imunologia , Cílios/fisiologia , Doenças Transmissíveis Emergentes/genética , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Feminino , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Emirados Árabes Unidos , Replicação Viral/genética , Replicação Viral/imunologia , Zoonoses/genética , Zoonoses/transmissão , Zoonoses/virologia
19.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099556

RESUMO

Human Middle East respiratory syndrome (MERS) cases were detected primarily in the Middle East before a major outbreak occurred in South Korea in 2015. The Korean outbreak was initiated by a single infected individual, allowing studies of virus evolution in the absence of further MERS-CoV introduction into human populations. In contrast, MERS is primarily a camel disease on the Arabian Peninsula and in Africa, with clinical disease in humans only in the former location. Previous work identified two mutations in the South Korean MERS-CoV, D510G and I529T on the Spike (S) protein, that led to impaired binding to the receptor. However, whether these mutations affected virulence is unknown. To address this question, we constructed isogenic viruses expressing mutations found in the S protein from Korean isolates and showed that isogenic viruses carrying the Korean MERS-CoV mutations, D510G or I529T, were attenuated in mice, resulting in greater survival, less induction of inflammatory cytokines, and less severe lung injury. In contrast, isogenic viruses expressing S proteins from African isolates were nearly fully virulent; other studies showed that West African camel isolates carry mutations in MERS-CoV accessory proteins, which may limit human transmission. These data indicate that following a single-point introduction of the virus, MERS-CoV S protein evolved rapidly in South Korea to adapt to human populations, with consequences on virulence. In contrast, the mutations in S proteins of African isolates did not change virulence, indicating that S protein variation likely does not play a major role in the lack of camel-to-human transmission in Africa.


Assuntos
Variação Genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Animais , Feminino , Geografia , Humanos , Imunização , Inflamação/patologia , Masculino , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Mutação/genética , Temperatura , Virulência , Internalização do Vírus
20.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34016708

RESUMO

The SARS-CoV-2 pandemic has caused a surge in research exploring all aspects of the virus and its effects on human health. The overwhelming publication rate means that researchers are unable to keep abreast of the literature. To ameliorate this, we present the CoronaCentral resource that uses machine learning to process the research literature on SARS-CoV-2 together with SARS-CoV and MERS-CoV. We categorize the literature into useful topics and article types and enable analysis of the contents, pace, and emphasis of research during the crisis with integration of Altmetric data. These topics include therapeutics, disease forecasting, as well as growing areas such as "long COVID" and studies of inequality. This resource, available at https://coronacentral.ai, is updated daily.


Assuntos
COVID-19 , Aprendizado de Máquina , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Síndrome Respiratória Aguda Grave , Animais , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/terapia , COVID-19/transmissão , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/terapia , Síndrome Respiratória Aguda Grave/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...